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ABSTRACT

This report discusses several features of the combined refraction-

diffraction model for Stokes waves (developed by Kirby, 1983) which limit its
applicability in shallow water. Chapter 2 discusses a proposed dispersion
relation for waves 1in arbitrary water depth, which provides a smooth patch
between the lowest order Stokes dispersion relation and an approximate
dispersion relation for shallow water, given originally by Hedges (1976).
Chapter 3 extends the large-angle approximation of Kirby (1983) to the case of
waves on currents, in order to allow for the calculation of waves which are
refracted or diffracted to angles which deviate significantly from an
initially preferred direction of propagation, due to the combined effect of
varying depth and current. Finally, Chapter 4 provides some calculations of
wave fields around surface-piercing islands, in order to illustrate the effect
of wave breaking and the use of a thin~film approximation for dry areas in the

model.
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Chapter 1. Introduction

Recently, a seriles of papers and reports (Yue and Mei, 1980; Kirby, 1983,
1984; Kirby and Dalrymple, 1983a,b, 1984; Liu and Tsay, 1984) have detailed
the derivation of a parabolic model for the forward scattered component of a
train of time-periodic, weakly nonlinear Stokes waves. In its most general
form, the model is applicable to the study of wave propagation throuch regions
with both slowly varying depth and ambient currents. For the case without
currents, good agreement between experiment and theory has been demonstrated
(Kirby and Dalrvmple, 1984 and Liu and Tsay, 1984) for cases where Stokes
theory is strictly valid.

The development of a wave model designed for practical application to
realistic modelling problems poses a number of physical problems which do not
fit wi _hin the theoretical context of the Stokes wave model. Several of these
nroblaems are discussed in the present report, and methods for including their
effects in the combined refraction~diffraction model are proposed.

In Chapter 2, the problem of matching dispersion relations between Stokes
and shallow water waves is discussed, and a formulation is proposed which
smoothly matches the dispersion relation for Stokes waves to an approximate
dispersion relation due to Hedges (1976) for shallow water. The proposed
matching alleviates the need for extending approximate calculations into
deeper water when their use in shallower water is dictated. Further, the
nrovision of a continuously-varving formula for all water depths insures a
smooth variatinn in both phase and group velocities from deep to shallow
water, eliminating the regions of discontinuity bhetween Stokes theory and the

full enoidal wave theory.
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In Chapter 3, a formulation for waves propagating at not-so-small angles
to the preferred direction and in the presence of an ambient current is given
in full. The present derivation follows the scheme indicated by Kirby (1983),
but the material presented here was not pursued to the point of completeness
fa the former report.

Finallv, Chapter 4 presents an application of the breaking wave model
dosceribed by Kirby (1983) and Dally, Dean and Dalrymple (1984) to the case of
a surf zone aroun?! an island. Since this chapter is in the form of a full
minuscript, discussion of the physical problem is left to the chapter

fatroduction.
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o
Chapter 2. A Modification of the Nonlinear Dispersion -
Relation for Shallow Water Waves -4
.- @)
s
5

A central prohlem in present efforts at modelling waves in coastal
rezions consists of the mismatch in wave properties as waves propagate from an 4
[
internediate depth region, in which Stokes theory is valid, into the nearshore 5
R
zone, Wwhere waves ire bhetter described by the Boussinesq equations. Several "J{j
- '.*
theories fror large amplitude waves in arbitrary depth (Dean, 1965; Rienecker P
‘4
and Fenton, 1981, for 2xample) provide a bridge across the division between ;
<
]
Stokes theory and cnoidal theory; these theories are computationally intensive :
L
and are tvpically used to accurately describe the properties of a single 3
®
1

wave. For the conputation of waves propagating through large areas of

variable depth, the use of the theories for waves of small amplitude is
computationally more feasible at present; formulations of this type are the "]
'!
subiect of the present report. )
-
2.1. Review of Sto<es Theory ]

Recently, progress has been made in modelling the propagation of small
]
amplitude Stakes waves due to the simplicity of the dispersion relation :
{ncorporating the lowest-order nonlinearity. Following Whitham (1967), this ]
..l
relation may be written as :]
2 2 2 "4
27 = w (1 + (ka) D(kh)) (2.1) b
[B] ‘
3
1
4
where }
) 1
N = gktanhkh (2.2)
(D} .
{
4
{s the linear Alspersion relation, and where ;
'Y
3

®
-
R i . . 4
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cosh(¥4kh) + 8 = 2 tanhz(kh)
8 sinhA(kh)

D(kh) (2.3)
(2.1) may be used to determine either w or k given a, the local wave
amplitude, and h. Yue and Mei (1980) demonstrated that (2.3) may be
incorporated in the lowest order parabolic approximation of the Helmholtz

2quatinua, vielding

wk 3
0

)
2ik A+ A - DlAlA = 0 (2.4)
o X vy

&

where A 1s the complex amplitude of a wave described by

‘ i[kox - wt}
n = Re{Ae

The resulting equation is in the form of a cubic Schrodinger equation for wave
evolutim in the x-directism. This formulation has been extended to the case
of waves on currents in a slowly varving domain, yieldin- the equation (Kirby;

1993, 1983):

5 c,+u U
’ ’ Y : | (= '~
(Cg + U)Ax + \\y * 3 et I Lg]yfA
i 3 2
- 5-(CCAD) —ukplajTAa = 0 (2.5)
2 LA
where
= g + kU, (2.6)
1/2 ,
3 = (ygktanhkh) (2.7)
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Ay = 0; lateral boundaries (2.28) » E

The computational model used in the present examples is obtained from
(3.28 - 29) by setting U = (U,V) = 0, neglecting any imposed ambient
current. We further adopt the lower order approximation of Radder (1979) and
set Py = 0 in (3.28).
Data from the laboratory experiment of Berkhoff et al (1982) are
available for tha labelled transects 1 through 8 indicated in Figure 2.2. The
computational domain was discretized into square grids Ax = Ay = grid

spacing), and the grid scheme was established so that grid rows coincided with

the measurement transects. Grid size was decreased until the point was
reached whare further reduction did not affect model predictions
significantly. The final numerical calculations were performed using a space
of Ax = D.25 me Results for wave amplitude normalized by the incident wave
amplitude are presented in Figure 2.3 in the form of a contour plot for the
rexion of the shoal and focus. The results for the Hedges model are
qualitatively similar to the Stokes waves results presented in Kirby and
Dailrvmple (1984), and ayrecement between the Stokes and Hedeges results s

definitely batter than hetween either nonlinear model and linear theory.

Plots of normialized amplitude for the labelled transects 1 - 8 in Figure

2.2 are wtiwven in Ficares .92 - hy respectively. The plots include results of
the Hedses aadel, the Stokes model and the lahoratory data of Berkhoff et al 3
*

(1987},
®
15
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where Ay = 0.0232 m is the amplitude of the inclident wave. The wave period
T =1 sec. Referring to Figure 2.2, we establish slope-oriented coordinates
1 L}

{x,v } which are related to the computational coordinates {x,y} according

to:

(x = 10.5)cos 209 - (y - 10)sin 200 (2.24a)

=
il

v = (x - 10.5)sin 20° + (y - 10)cos 200 (2.24b)

The origin {x s Y } {0,0} corresponds to the center of the shoal. The slope

is described by:
0.45 m, x < = 5.82m (2,25a)
] 1]
0.45 - 0.02 (5.82 + x )m, x 2 - 5.82 m (2.25b)
The boundary of the elliptic shoal is given by:

(5 + (& =1 (2.26)

and the depth in the shoal region is modified according to:

x' 2 XL 2 1/2
h = b ione = 0.5 1 - (3‘75) - 5) ] + 0.3 (2.27)
r 1]
resulting in a depth h(x =0, vy =0) = 0.1332 m.

The lateral boundaries at y = 0, 20 m are open, but are far enough from
the region of the shoal so that we can specify reflective hnundary conditions

on the lateral houndaries L4

]
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definitive laboratory data which shows the direct effect of amplitude

t dispersion in intermediate depth. For this reason, we include here a
comparison of the refraction-diffraction calculations based on Hedges form of
the dispersion relation, and data taken from the experiments described by

ﬁ Berihoff et al (1982). This data set has already been used to check the

'A“I .
. U

linear form of the CREDIZ model (Berkhoff et al, 1982), and a nonlinear model

based on the Stokes dispersion relation (Kirby, 1983; Kirby and Dalrymple,

!‘_'J_‘J_A_J ;

! 1984). The reader is referred to the previous literature for details of the
experiment. The work of Kirby (1983) and Kirby and Dalrymple (1984) compare
the Stokes model to results obtained using linear theory, and establishes that
the Stokes model provides a detailed, accurate reproduction of the

experimental data. We therefore take the view in the remainder of this

-
®,

section that the Stokes wave model represents the "correct” wave model for

t waves in intermediate water depth (Ur < 0(l)). We will therefore be primarily
interested in how much discrepancy between numerical and experimental results
is introduced by using approximate dispersion relations. We summarize the
i important points of Lthe experimental arrangement here. The experimental - .Jl
topography consists of an elliptic shoal resting on a plane sloping bottom ?
with a slope of 1:50. The plane slope rises from a region of constant depth :
e h = 0.45 m, and the entire slope is turned at an angle of 20° to a straight ';
wave paddle. Bottom contnurs are shown in Figure 2.2 along with the chosen 1
computationil domaln, which is indicated by the dashed line surrounding the
¢ contnurs. The offshore boundary of the computational domain is chosen so that ®
water depth L5 constant along x = 0. The initial condition for the wave then . 1
corresponds to the mmiform wave train generated at the wave paddle; we set: 1
) .
Ax = 0,9) = A (2.23) ]
12
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wl/gk = (1 + e/2kh)tanh(kh + €/2) (2.20)

\

corresponding to Walker's approximation, and

a wz/gk = tanh(kh + €) (2.21)

{i corresponding to Hedges approximation. The variation is over values of kh for o
fixed values of wave steepness € = ka; curves are given for values of € = 0.1,
[ 0.2, 0.3 and 0.4. The results show that the difference between Walker's
approximate form and linear theory remains pronounced for large values of kh,
while Hedges approximation approaches the linear result move rapidly. The

common shallow water limit of the two relations for small a/h is seen to break

-]
down for finite values of a/h, with (2.20) reducing to g
o
2 2

w /gk = kh + € + € /4kh (2.22) o
o
;.ﬂ?
where the last term becomes large for any fixed € as kh + 0. It seems that S
Booij's conclusion that Hedges' approximation is preferable to Walker's based 1
K

on the deep water behavior extends as well to the shallow water limit, due to
L
the 0(62) term which cannot be made arbitrarily small in shallow water. S

Hedges (1976) approximation has bheen used to form the basis of nonlinear
effects in at least one operational refraction-diffraction model; the model -
o
- 3
CREDLIZ developed by the Delft Hydraulics Laboratory in conjunction with the )

Rijkswaterstaat. A recent callbration of this model is described in

Dingemanns (1983) and Dingemanns et al (1984). To date, no adequate

comparison has been made between the approximate nonllnear model and any

9
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Alternatively, Hedges (1976) proposed a similar relation of the form lj,

ﬁ,fv,,ﬁvrvf,“
L N P
e
-l

ﬁ,
. . o
t
.

w = gk tanh(k[h + a]) (2.16)

Y

Both (2.15) and (2.16) have similar properties in the limits of deep and
shallow water. In shallow water and for a/h small, both formulas lead to a . ;
digpersion relation ,,;
o
2
w? = gk’(h + a) (2.17) ]

or, equivalently, a phase speed

/2 (2.18)

C = [gh+ a)l

This phase speed represents the speed of propagation of a solitary wave of

height H = 2a. The shallow limit of either approximate form is thus

physically reasonable.

In the deep water limit, both (2.15) and (2.16) approach the linear

‘. dispersion relation, as the ratio a/h approaches zero due to increasing water

=

. depth. Booij (1981) has mentioned, without demonstration, that the approach

5 to the linear form is quite slow if the relation (2.15) of Walker 1is used. _‘1
-. Figure 2.1 shows the variation of the right-hand side of the relations ]
§ R
I. 2

' w

: — = tanhkh (2.19)

. gk

. 4
® L

corresponding to linear theory,

PR P
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» el
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Recently, Liu et al (1985) have shown that refractifon-diffraction
calcnlations may be performed for regular cnoidal waves using a spectral
approach based on the Boussinesq equation. This method {is reasonably simple
to develop, and computations are straight forward and fairly economical due to
the simplicity of the wave-wave interaction coefficients in shallow water.
However, the calculations are highly dependent on the relative phase speeds
and amplitudes of a number of waves in a discrete spectrum, and the method can

not be applied to the present monochromatic model.

Alternativelv, several authors have proposed simple modifications to the

linear dispersion relation which are designed to mimic the effect of amplitude

dispersion in shallow water. Based on a large number of laboratory
observations of broken and unbroken waves propagating over a focusing
topography, Walker (1976) proposed that the nonlinear effects in shallow water
could he modelled in a refraction scheme by modifying the predicted linear

phase speed according to

4= C(1+ a/h) (2.13)

where "a" is the wave amplitude and

(B3} 1/2 B
CZ = %= (gtanhkh/k) . (2.14) "
Booij (1981) showed that a dispersion relation equivalent to (2.13) may be .1
"
writton as R
]
02 = gk(1 + i—ﬂ tanh(k[h + Eﬂ) (2.15) ;
: 2h 2 3
:
7
. J
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2.2. Approximate Shallow Water Dispersion

¢ The limitations of the Stokes theory leads to two modelling problems: o
1) An alternate theory (cnoidal waves) must be used to describe waves in the
range where

s
b 2
3 1Al o oy, ' .'

(kh)® 3

2) A way must be found to describe the smooth transition of waves from the

Stokes regime into the cnoidal regime.

The first problem results from the limits of validity of the Stokes
theory. The second problem arises due to the fact that wave properties do not
vary smoothly across the division between Stokes and cnoidal waves.

Using the results of cnoidal wave theory, the dispersion relation for

periodic waves may be written as (Flick, 1978)

c = @1+ L:;Lfl(m)) (2.11)
where
1 3E(m)
£ (m) = o (2 - e m) (2.12)

and where E(m) and K(m) are the Jacobean elliptic integrals.

This relation may be used to calculate local values of k in a modelling

scheme. This analytic approach has been used in several refraction schemes

(Chu, 1975; Skovgaard and Petersen, 1977; Headland and Chu, 1984) as a means -.;

4

for including the effect of shallow water amplitude dispersion. The full <

L

formilation requires a large amount of iterative computation due to the -]
interrelationship of the wave height H and elliptic parameter m.

6
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Here, «w is the fixed wave frequency with respect to the stationary domain, and
the wave {s assumed to be propagating in the x-direction.

Equations of the form (2.5) (or the large angle, large current extension
described 1in Chapter 3) are applicable in intermediate depth (kh ~ 0(1)) and
are correct in the deep water asymptote (kh + =) under the condition of
k|A] << 1. In shallow water, the regular expansion in k|A| breaks down and is
replaced instead by an expansion to lowest order in kh < 1, |A|/h < 1, with

the Ursell number

u = lélih ~ 0(1) (2.8)

r (kh)2

representing the region where cnoidal and solitary waves are described. The
breakdown in the Stokes theory may be seen by looking at the shallow limit of
(2.3);

’

D(kh) ~ %(kh)"‘; kh + 0 (2.9)

The singularity in D as kh + 0 is quite severe and overwhelms the computations
if regions of the computational domain bhecome too shallow. The dispersion

relation may be arranged to the form

. 2
o= w 21+ 2 (1l a2 (2.10)

indicating that |A|/h must remain extremely small as kh + 0, in order for the
Stokes theory Lo remain valid. This requirement is clearly not applicable in

the vicinity of surfzones, where |A|/h is typlcally of 0(1).
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(X=105){m)

Comparison of model using Hedges (1976) dispersion
relation to the Stokes model (Kirby and Dalrymple,
1984) and laboratory data (Berkhoff et al., 1982).

Stokes model; ————- Hedges model; o laboratory
data. a-h) sections 1-8, respectively.
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2.3. Matching Stokes and Shallow Water Dispersion

The inadequacy of an approximate shallow water dispersion to model
nonlinear effects in intermediate water depth, coupled with the invalidity of
the Stokes model in shallow water, leads to the need for a matched dispersion
relation which predicts the phase speeds of waves smoothly from deep to
shallow water. This problem is central to the prediction of the properties of
shoaling waves.

Goring (1978) has shown that a matching exists between Stokes and cnoidal
waves in the limit of small amplitude, by showing that a regular perturbation
solution of the Korteweg-deVries equation is equivalent to the shallow water
limit of the Stokes solution for general water depth. However, for larger
amplitudes the series solution does not converge, and the solution in terms of
powers of € = ka becomes inappropriate. In effect, as water depth decreases,
the Stokes solution may become invalid before the region of validity of the
cnoidal theory (small kh) is reached. Flick (1978) suggested that it may be
possible to construct a dispersion relation by means of matched asymptotic

expansions; he suggests a relation of the form

W

c = K= Cs + Cc - Clin (2.29)
where

2_1/2 1/2

CS = (1l + ¢ D) / (gtanhkh/k) / (2.30)
is the Stokes phase speed,

c = (gh)l/z(l + 2 F (m)

c h 1
20

. .
L © e
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(2 - 3E/m)/X(m) = m)/m (2.31)

n
—
—~
3
~
!

is the cnoidal phase speed, and

1/2( a/h ]2)

(2.32)
(kh)?

Clin = (gh) 1 - -é-*(kh)2 + %B{
is both the shallow water limit of (2.30) and the small amplitude

(m* 0) limit of (2.31). The fact that these limits coincide lends further
creedence to the conclusions of Goring (1978). However, in cases where the
small-amplitude limit is inappropriate, (2.32) may not be used directly as a
reasonable approximation. This would seemingly include the majority of
cnoidal wave cases, where the Ursell parameter (a/h)/(kh)2 is 0(1l).

For the purpose of inclusion in the monochromatic wave model, we propose

that a dispersion relation of the form

9
Wroo w1 £, (kh)e D) tanh(kh + £, (kh)e) (2.33)

may be constructed in order to model nonlinear effects over a broad range of

depths. Comparing (2.33) to the previous forms of the dispersion relation, we

see that the Stokes wave form is recovered by the choice

Ty TTwWwe
RSN

fl(kh) = 1.

N

all kh (2.34)

fz(kh) = 0,

while the Hedses model is recovered by choosing

21 ,Tj X
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T fl(kh) = 00 y
. - @
) all kh (2.35) R
4 R
fz(&h) = 1. 1

The composite model may be constructed by choosing forms for the arbitrary
functions f, and fy. In particular, we require that fl(kh) + 1 as kh» =
while fz(kh) + 0 as kh + =, in order to recover the Stokes wave limit. 1In
shallow water, we requlire f2 » 1 as kh » 0, while f)(kh) must be of O(khs) or

4

smaller in order to overcome the sinyularity in D, which is O(kh™ '). Based on

these requirements, we htave chosen f. and f, according to
L

[}

fl(kh) Lanhjkh (2.36)

£,(kh) = [kh/sinh(kh)]“ (2.37)

The dispersion relation resulting from these choices is illustrated in

Figure 2.5, where the right-hand sides of the following relations are plotted.

Linear Y
2 @
Y_ = tanhkh (2.38) © 3
gk ' ’ I
Stokes S
wz 2 - @
- = (1 + € D)tanhkh (20 39) ' Y
gk Ty
R

Hedges ;
2 ®
I tanh{kh + €) (2.40) 1
gk ]
. 4

]

1
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Variation of linear and nonlinear dispersion relations
with kh and wave steepness ¢ = ka. linear;

—+—+—+ Hedges; —++—++— Stokes; ----- present composite
model. a) ¢ = 0.1, b) € = 0.2, ¢) ¢ = 0.3, d) ¢ = 0.4.
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Composite

2
w

2
EE- = (1 + f €°D) tanh(kh + fze) (2.41)

1
As in Figure 2.1, results are plotted for a range of kh values, and separate
sets of curves are given for choices of ¢ = 0.1, 0.2, 0.3 and 0.4. An
inspection of each set of curves shows that the composite form (2.4!) matches
smoothly to both the Stokes form (2.39) in deceper water and the Hedges form
(2.40) in shallow water. The strong singularity in the Stokes form is also
apparent. The curve corresponding to the composite form typically lies
between the Stokes curve and the Hedges curve, which may or may not intersect
each other.

We remark that the choice of the exponent 4 in (2.37) led to the bhest
positioning of the composite curve (2.41) with respect to both the Stokes and
Hedges relations, with both higher or lower exponents leading to fairly large
deviations over some portion of the range of kh. The choice of the exponent 5
in (2.36) is of course dictated by the requirement imposed by the singularity
in D.

The composite model was tested by recomputing the example of Berkhoff
g&_il_(l982) using the modified dispersion relation. The dispersion relation
is incorporated directly in the nonlinear Schrgdinger equation for complex
amplitude A following the method of Kirby and Dalrymple (1984). The nonlinear
modification to the time-dependent form of the linear mild-slope equation for
velocity potential $ at the free surface is given by

~ 22w
b w7t (CCT ) + (w8 - kTCC )b + Fp = 0 (2.42)

where
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.

F = w -w (2.43)

2 .
and W, is the linear wave frequency squared;

o

W = gktanhkh (2.44) L
L |
Representing w?l by (2.33) and letting ; be represented as ?
- {o i(kox - uot) - é
¢ = Re{- 5 A(x,v)e , (2.45) k
E where k, is a reference wave number, reduces (2.42) to the form .i
k'
N 4
Fo
b 1 .
b i
- i - - 5 . v
- CgAX + 1Cg(k0 kK)A + —2—(Cg)xA Zmo Vh (CCg hA)
1
}t 1
s to_ s o . tanh(kh + fzk}AJ) @,
+ + - A =0 . :
| 2 [(l f1k lAl D) tanh kh 1] (2.46) :
1
. {
}. <
Ei This form of the nonlinear model is used to compute results corresponding to K
@
the experimental data. The computational grid and domain is as described in 1
{ )
section 2.2. A paraholic form of (2.46) is obtained by using the scaling j
. 4
b assumption ]
- .1
<
g | ] << oGik]a]), (2.47) )
4 ) +
f 1
e °
leading to the neglect of the term (CCg AX)x in (2.46). Again, the T

conputational scheme is described in Chapter 3; here we use the choice Py = 0.
A contour plot of normalized amplitude |A|/AO ts given in Figure 2.6. .

The contours resul Ing from calculations using the composite model are closer
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Amplitude contours relative to incident wave amplitude:

present composite model.

Figure 2.6,
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in shape to the results of the Stokes model than are the contours of the
Hedges model, as would be expected. Plots of normalized amplitude along the
labelled transects 1 - 8 are presented in Figure 2.7, where the composite
model results are compared to Stokes model results and laboratory data. The
results of the composite model are generally closer to the Stokes model and to
the data than are the results of the Hedges model, although the discrepancies
in either case are not large, with all models generally showing bhetter

asrcement with data than the linear modele.

2.4 Conclusinns

The present chapter has presented a method for extending the effects of
nonlinear dispersion in a monochromatic Stokes wave model into water depths
which are too shallow for Stokes theory to retain its validity. The proposed
mod2l provides a smooth patch between Stokes theory and an empirical shallow
water relation due to Hedges, with the two separate forms being obtained in
the limit of deep and shallow water, respectively.

Although example calculation show that the differences between the Stokes
model and Hedges model are not large in intermediate water depths, we feel
that the preseat results are preferable to the use of the Hedges relation
alone for several reasons. First, the fact that the Hedges model approaches a
linear model in deep water implies that discrepancies would inevitably exist
in calenlations which start or extend into fairly deep water. Utxisting
laboratory dattr covers too shallow a depth range (and oo low a1 range of wave
hefvhts) to show these discrepancies fullye  The present method provides A
moans For patehing the empirica’ snallow water mode]l into a4 more reasonable

doep water Limit.
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Firure 2.7. Comparison of model using the present composite dispersion
relation (2. ) to the Stokes model and laboratory data.
Stokes model; —--—- composite model, o laboratory
data. a-h) sections 1-8, respectively.
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Secondly, althouuh the difference between results of the Hedges and
Stokes mod2ls {s not severe, the errors in phase and group velocity would be
expected to accumulate over long distances for waves propagating in shallow
water. The proposed composite model reduces the small local error in the
Heduzes model by mixing the Hedpes and Stokes effects together, and would be
expected to produce more accurate results for waves propagating over large

distances.
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(PVi + PV _1) :
. 3 (3.38)
5-1
o
and where 4
i 2.1
pv, = (p ~- V), 3.39) B
R
4
°
st b st lp - uH o wlp - uHh) :
st i i, i j i j .
] .2 ‘+ . 5 .2 !
GoGF T eolat i Whip - vHF s o - uHE) .
] ] ] ] J ] 3
[ 1|
(3.40) ]
The remaining term C4 is given by 1
[ )
_1
. tanh(kh + f_k|A|)
W 10/ 2 2
ca = 2A+ 21\l+fl<kIA,) D) tanh kh 1} A -
(3.41) X
LJ
. <4
which 1{s written out in finite difference form as
.i
ol o /L{wgl i, b - -
j Yo j I ‘
1+1 tanh(ki_+lh%+1+ f 1+1ki'+1|:,;"i+1| )
g, i+1 2, . i 2, 7§ j - @,
‘ i+1, 7 ~vi+l i+1 - j i+1 ;
+ e E G AT 0T TSNS -1hay )
i ! J J t:mh(k1 h, ) ]
. o
(ol ) ) t;:mh(ktihii + fziki_lAill ';J
i, i . ] R i p
e TR R - S
IR tanh(k:- h>) ]
) (3.42)
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i
Aj = A(iAx, jay) (3.30)

The computations proceed by updating values of A from the known "i" row to the 4
unknown "i+1"” row. Iterations for the nonlinear terms are performed using a e
repeated implicit calculation as in Kirby (1983). ' .?
Using the notation (3.30), (3.28) is written in finite difference form as ;F
]
cril al*l 4 cpol altl . cpal pitl ‘
i3 j ol j -l
1
)
i 1 i 1 i i i
= Cl, A, + C2, A, , + C3, A| - 2(Ax)C4, 3.31 .
i 3ol il 3 ( ) )
where Cl, C2, C3, CPl, CP2 and CP3 are known coefficients given by
I3 . -'4
i 1+1 _ t+1 AR 1 ¢
crit = (C_ + T+ 1ax(k - k)T + (€ + UL+ (F—T )]
j g j j g j 4 j
: : : 1 . - -
o 41op yoltlogly  (vithevt ettloedt o o,
. , 1 REA i 1 ( i Kl i+l j+1 "4-1 i-1-- R
T i T B B Vo U S * 4 / :
1 1 1 (kl + ki)g- X y
i+1 i+l i+1 ®
2P + . + PV, _—
PO U i B . S (PVier * 2Py i=1 e
' AT 175, 2 i+l B
V) (v Tk 4R T2(8y) g, 9
1 ‘ ] (3.32) )
)
3
W :
SRR Cow o -]
S SSUU D T T SRS O 1~~'i+1+(!‘1_/y~)i+l_(&i : 1
S : i N i thy Lig’ el Lo/ i+l ‘o’ j-1 c}j—l‘ : 4
»J
*
(3.33) ,
o
A
)
43 \

SO SR, HE DU UR TSRS SR SO A S S o Bm B, LN CUNE VIUE TR S S RN Y SN VI W A A s . alelaLals e s o8 A A .a NP L4




R v T W T TR e - -
R Bl ST e S B S An e Sate LR — Sl Sedh ot Jan s " POulFG el o Aot ses Macem s 4 ~-—w—w-

~

cC + U
c ER v :
(Cg + U)AX + VAy + 1(k k)(Cg + DA + 7 L Jo * \3,y;A :
i 2,(A Lo A A io | 2 2 e
-2 L = (G L+ 5 Hov(G) )+ (oG )b+ 57 kpfal®a .
w Py 2. A A "
I3 1 . «
—_— + —— — —_— 3 — '
e e e - v, e 2l ) ) )
L
{
q
(A Y N0 _ 2yA -
+ p3{2iwu(z) + 21°V\a)y ZUV(OJXY +[(p -V )(O)y]y} B
i — A @
1. a = 2
PRGN ICIN B e 0 (3.28)
This equation extends the published results in Kirby (1984) and Kirby and )
4
L
Dalrymple (1983b) to the case of waves propagating at large angles to the ]
x—direction in the presence of a current. Nonlinearity here is consistent -:
with the lowest order Stokes formulation of Kirby and Dalrymple (1983a). The :;
e
nonlinear term may be directly modified according to the results in Chapter 1
2. The resulting equation is of the form
kh + ) j
(C + D)A_ + i‘-g-{(l + f (k|A|)2D tanht fzk‘Al) - 1JA+ oo =0 (3.29) .‘
I X 2 1 tanh kh
where f, f, and D are functions of kh given by (2.36), (2.37), and (2.3 ) :
®
respectively. _ J
3.2 Finite Difference Scheme ]
o
The finite difference scheme for (3.28) follows directly using the Crank- - ]
1
Nicoalson method For performing an implicit update for each row in x. The ]
4
notation of Kirby (1983), section 6.2 is retained. We denote x—positions by 1
L)
.

"i" superscripts and y-positions by ”"j” subscripts. For example:
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where al and a3 are al and a3 written in terms of A. The first bracketed

term is given by

t )

(3a, + 8RBV + La,}

- a{zmu(é\—)x + i(wU)X(Oé} - wUk(e - 1)(3)
+ zwv(g—)y + i(cv)y(g) - i(k(e - 1)Uv)y(§)
- 2ik(e - 1)UV(§)y - (UV(;A)X)Y - (Uv(g)y)x

e -v (5

I}

y'y

+ {(w)xy(g) + (mU)XX(:—) + (wv)y(oé)x + 1k(e - 1)(wV)y(§)

|-

+ 3(wu)x(§—)x + 3ik(e - D(wl), %}

So far, nothing has been dropped besides some second derivatives of

(3.27) SO

currents. In order to simplify the equation further, we drop the following

terms as being small:
1) Terms 1in (1 - €) multiplying products of current components or
derivatives.

2) Terms with B multiplying derivatives of the ambient current.

We are then left with the form of the equation to be used in the numerical

scheme.
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C
[
g P, - Pl(k/k) = Py - P+ P (1 - k/k)
p™ - L+p(1_5) (3.25)
. 2 1 k
Denote & = E/k. It is usually assumed that ¢ = 1; i.e., the wave number

varies only slightly along a grid row. Making this assumption, we may take

1 -~ € << 0(1), introducing a small parameter. The full equation for A defined

fa according to
$ = - %g-(gﬂ eiw + c.c.
is given by
: o Set 0,y
(C, + WA+ VA + 1k = K)(C + va+ 5 {(F5), + (;)y}A
1,2 2y W Lo g2y (A
+yokDalfA+ Ta -1k -v) (9]
i A A
+ 5 (@) )y + (ov(3 )
ST 2. (A
o e - v (), + 2ilev(G 1T :
Wi .1
’ v -1y i ' ‘-.u~.".
+ Pl{:?al +BRie T+ g } R
™
s
P <
: A 1 A 1 A }
o v (e - 1)kUv(0——)y -5 - 1)kUV}y(;) + —Hefa - e)kUV(;)y]x o
[ 1
[ . A - A - _ oyl (A 1
- = k(L = ey (ekuv) () + 261 = e)ov(G) - ikl - X - V() q
o .
P. A Cuv( A
| + k(1 - e){[uv(a—)y}x + Luv(;)x)y} = 0 (3.26) !
- ]
L + .
i -]
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: The right-hand side of (3.17) becomes -
' ] “
- A 1 A e 4 T
R.H.S. = (wU) \5) + 3 (w)x(O ) + 1Py + 1P,R (9)e j
p P ]
L NN CS T Tye 1V
=3, n Rz(p)“ + PlBal + P18R1(¢)e (3.21) -
Evaluating iqul - (Pl/k)cx2 given
Pl ? 1 ! P
A wl A wV A 1
- [ — = - AN _ (= 2y _ - 4
12y = (g 9y w0 (5, ~ (T - (GG -1 ey
(3.22)
3
where q
' ' ' ' -.
A A A A
ay = (wV)xy(o ]+ (»u)xx(0 )+ (w)y(o )x + 3(wU)x(g )x (3.23) o
1
The R.H.S. of (3.17) reduces to ]
1 1) P
1 A 1 A . _L b
R.H.Se = =3 (ov)y(O ) -2 (kUV)y(0 ) =i, :
~ Pl ~ -1y ~ -1y
. _ ot 4
+ [P, RE) - = R5)] e 7 + P 8la + RyG) e ) o
&
(3-2&) h
We now need to simplify R1 and R,., Shifting to the reference phase 117 defined J
< L
e
in (3.56), we continue to expand all terms In order to eliminate the phase
function } and 1;. The use of ; injects a k in the equation in place of k in
some terms. Note that -
L J
]
]
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will have some contributions like

P
oy - L uG ) - _ 5 ~ Lop
P06 - MG = 1(r, - P ) ~ o)

These will balance the { } terms above in (3.16) and give the lowest order
diffraction and y-direction transport terms. Terms without y derivatives may

' ~
be manipulated simply. In terms of the complex amplitude A , M¢ becomes

t ] A

~ -y A
e = 10 (5 ¢ 1) (5 4 2100( 2
+ {2i0v3 + [(p - vt 3 ] - vE ) - (Ui ) eV
y P y'y xy y %
= v (R e MV (3.19)

where the phase is successfully eliminated from a;. Differentiating (3.19)

Zives

1 1] |

o) e = -k (2 - 2kou(B) 4 L@V, (&
A A A
s 1w (5 - k@ (5 + 1) ()

A

3@ (39

X

+ {21(zu\1)x§v + 21(\JV)$W + [(p - V2)$V]xy

- ~ -t
- 1 - N
(‘Wx)xy (UWy)xx} e

[}

a, v (RP) e (3.20)
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5 (3.13) is then given by

~ 1 N~ ~

o(Cg *U) e+ [O(Cg + U] 0 iko(Cg + U) ¢
i 22 ,." 2~ W
+5okD|A| d+o o

~ _L ~ e ~ _ ~
- {wl 4 5 @OF - ikwld} - e

P

1 ~ s
+ " (M¢)x - P18d¢ = 0 (3.16)

~

The term { } will be cancelled by leading order contributions from P2M¢.

Substituting for ; using (3.11) gives
cC + U

L) 1 t 1 \]

(C +waA + (-5 — +Lok2D|A IZA + 2
g X 2 o X 2 2 Y
-
S
A 1 A 9 b1 iy ]
- — — . __: . \N - V Y _1l1) _' 1
= mU(O )x + 5 (JU)X(0 ]+ 1P24¢e - §—1M¢)xe ,f~‘
O
. ®
~ =iy R
+ Plﬁ(m)e (3.17) 1
JOSIAN |
The right~hand side remains to be simplified. Note that -
@
S
] L :
T - (A A Y 1
¢, = (5 Jy + Wy(c )]e (3.18) ]
o

Also, terms In )
1P (M) = = (Mo) Qi
T
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.
E; We will use a local phase and amplitude according to
':l :
- A i
) ¢ = - ig (—;)a ¢; yp o= f k(x,y)dx - wt (3.11)
So that
I ~ 1 t .
¥ g—% = - ig [(g—-) + ik(é—)]ew = ik$ at lowest order :
- x
@ }
3 1/2 L
Expanding (3.8) and multiplying by Y glves 1
{ !
iy ¢ ?.E. - E_).li \N - s <
i 3 5L+ 5T - p (G - p () o ;
¢ o
- o ) ?
» i (M¢>)x - iPMb - ikyd - 1(P, - P ONG (3.12)
-
[ £ °
- Note that P, ~ P, = 1/2 whatever the value of P;; so that ]
3 9
" 3, Lavy _ L0y e (it ]
B, Y 5E+ 5506 - ikre N + i (Mo) - 1P,(M9) 1
. .
] 3
3% Rk -UD) <
k 2k (p - UT) )
o °
Defina: ( ) -.‘f-.]
k k(p - U)
k 2k“(p - UT) -
]
o )
And note that - 1
B
Y = kp - kUU = o(C_ + U) - U (3.15) ;
° 5 o,
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(UV), A, (UV) A, OV A

will be dropped.

Finally, a reference phase function is defined according to

Vo= flz(x)dx - wt (3.6)
X
where
_ ¥ )
k(x) = [ k(x,y)dy/ [ dy (3.7)
A ¥,

is the average of the linear wave number over a y-coordinate grid row. We now
proceed by reducing (3.1) to a usable form.

Denote k(p - UZ) =Y., Then, (3.1) may be written as

d 1/2 3 -1 -1/2 '
(V%) e (N 2 )

1/

-1/2 '
= 1iky 2¢ + iy /

PZ(M ¢) (3.8)

~

+ N 9, where N are the localized nonlinear and dissipation

'~

Denote M ¢ = M

-

terms. Then

(Mo) = (20kU + 1wV Ujd + 2iwlv$ + ((p - v2)$v\
—(UWX%,-(UWyk (3.9)
~ 2.2 2~ ~
No = -0 k'DIA]T ¢ + 1owp (3.10)
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gradient operator, and w represents a damping coefficient due to the presence
of boundary layers or porous bottom damping (Dalrymple et al, 1984) or wave
breaking (Kirby, 1983). Kirby (1983) developed (3.1) with U = 0, and P, = 1/4
in its full form and gave the numerical scheme for the large angle
approximation without currents. This chapter provides the same information
for the case of waves interacting with a pre-specified ambient current.
Section 3.1 gives the derivation of an evolution equation for complex
amplitude A based on (3.1) with P} = 1/4. Section 3.2 provides the finite
difference form of the evolution equation using the Crank-Nicolson

approximation.

3.1. The Parabolic Equation for Waves on Currents

As a first step, the parabolic equation for 5 is developed. Several
simplifying assumptions will be employed. First, nonlinear terms and
dissipative terms will be considered to be grouped with the highest order
contributions in the equation, and only the largest contributions resulting
from manipulations to these terms will be retained. For example:

-g—x (aszDlAlz $) = 02k20|A|2 2—;; = 1021(317[/\[2 ¢ (3.5)
These terms will therefore not retain any derivatives related to the slow
spatial scale of variation.

Booij (1981) drops all terms containing products of ambient velocity

components. Here, Lhese terms will bhe retained up to the level of second

derivatives; i.e., terms such as
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Chapter 3. Large Angle Formulation for the Wave-Current Model

Kirby (1983) provided a higher-order, large angle formulation of the

parabolic approximation for waves on currents, following the original work of

Booij (198l). The governing equation for the value of the velocity potential

{ § at the mean water level is given by Kirby (1983) as
|
5 1/2 PIM N
( {k(p-0v7)  (1+ 5-) ¢}
b k (p-—U ) X
\
, 172 P, 5
= ik[k(p - U] (1 + 5 2)¢ (3.1)
‘ k"(p~-1U )
3
f where
p = CC (3.2)
[ P, = P, - 1/2 = 0 or 1/4 (3.3)
3
b and
(
T~ ~ ~
Moo o= (20kU + 17, eU) 0+ 2000V ¢
. —wd ), - i)+ [ - v F ]
g x"y y'x vy
2.2 2~ ~ -
- o kD|A|TY + fowd (3.4)
4 The cholce Py = 0 reduces the model Lo the lowest order approximation of
y
; Radder (1979) or Kirby (1983,1984). The choice Py = 1/4 gives the higher
‘
i order approximation proposed by Booij (1981). Finally, U = (U,V) represents
f the amblent current In x anu y coordinates, Vy represcnts the horizontal
!
3
‘ 13
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~ i+] i+1
Here, the unknown Aj is given by the last updated value of Aj in the
iteration procedure. Chapter 4 describes how wave breaking is incorporated in

the specification of the dissipation coefficient w.
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Chapter 4. Modelling Waves in Surfzones and Around Islands

4,1. Introduction

In recent years, the parabolic equation method for wave propagation has
seen a rapid development in the context of predicting surface water waves over
areas of variable bathymetry, including both the effects of refraction and
diffraction. The original development of the model was based either on a
splitting of the elliptic mild slope equation of Berkhoff (1972) into couplad
equations for forward- and back-scattered wave motion, as in Radder (1979), or
on direct perturbation expansion of the governing equations using the WKB
formalism, as in Liu and Mei (1976). Recent extensions of the capabilities of
the parabolic method include the modelling of wave-current interaction (Booij
(1981), Kirby (1984)), iterative calculation of the reflected wave field (Liu
and Tsay (1983)), and the inclusion of lowest order nonlinear effects in the
Stokes wave formulation (Xirby and Dalrymple (1983, 1984), Liu and Tsay
(1984)).

An advantage of the parabolic method over solution techniques for
elliptic and hyperbolic equations 1is that no downwave boundary condition is
needed for the solution of the initial boundary value problem. However, in
applications of wave models to coastal areas, accurate modelling of the
behavicr of waves in the vicinity of a physical downwave boundary consisting
of an actual coastline or an offshore island is of primary importance to the
pradiction of known physical effects such as wave-induced runup, longshore
currents and scour.

Wave hreaking in the surf zone is a complex, highly nonlinear
phenomenon. It is obvious that the paraholic equation method, which is

limited to the representation of linear or weakly nonlinear wave fields, is
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basically incapable at present of representing the underlying physics of the
breaking process. However, some progress can be made by shifting our view of
the model from its physical basis to its use as a predictive tool.

The forces leading to the generation and maintenance of setup and wave-
induced currents depend on a physical balance between gradients of excess
momentum fluxes, pressure forces due to changes in mean surface elevation, and
bottom shear stresses. The role of a wave model in determining the balance
consists of predicting the local wave energy density and direction of
propagation of the wave field. Thus, as a lowest approximation of the overall
physics, it suffices that the wave model be able to predict the local wave
amplitude in the breaking zone with some degree of reliability.

The simplest model of wave decay in the surf zone, the spilling breaker
model, is based on the assumption that the ratio of wave height to local water
depth has the same value everywhere in the surf zone as at the breaker line.
This assumption has been used extensively in the literature, from predictions
of setup (Longuet-Higgins and Stewart (1963)) and longshore currents (Longuet-
Higgins (1970)) up to the latest applications of numerical refraction schemes
to the study of wave-—induced circulation over arbitrary bottoms (e.g.,
Ebersole and Dalrymple (1980)). However, it has long been known that breaking
waves, especially of the plunging type, do not follow so simple a rule.
E-.tensive model tests of normally incident wave trains breaking on laboratory
beaches have shown that the pattern of wave height decay across the surf zone
is strongly a function of the beach slope. Representative measurements of
Horikawa and Kuo (1966) are shown for example in Figure 4.1 in comparison to
their dissipation model.

The purpose of the present study {s to relate an empirical model of surf

zone wave enersy decay to the dissipation coefficient w of the dissipative
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Figure 4.1. Measured wave heights in a laboratory surfzone .
a) beach slope s = 1:20, b) s = 1:65 (from Horikawa T
and Kuo, 1966),
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wave model of Dalrymple, Kirby and Hwang (1984), and to detail the application
3 of the model to the prediction of wave height in the surf zone. Here, the
f model of Dally, Dean and Dalrymple (1984) is used, although any of the related )
r
C models for dissipation in bores could be applied just as well (Horikawa and
¢ Kuo, 1966; Divoky et al, 1970; Battjes and Janssen, 1978, for example).
{ 4.2, The Energy Decay Model

Dally, Dean and Dalrymple (1984) have proposed that the decay of energy
flux with distance in the surf zone is proportional to the excess of energy
flux over a stable value, given for waves propagating shoreward in the x

direction by the relation
——(EC)=—5(EC - (EC_).) (4.1)
g h g g’s

where h is the local water depth and K is a constant to be determined, which

is related to the rate of energy decay. The quantity (ECg)s is the "stable™

energy flux for a broken wave in water of depth h. Here E is 1/8 ngz, H is
2kh : .
the local wave height and Cg =1+ sinh 2kh)/2 where p 1s the fluid density,

g is the acceleration of gravity and k and h are related by the dispersion
relationship, wz = gk tanh kh. Here w = 21/T, where T is the wave period.

Dally et al. show that this model of wave energy decay is analogous to the

energy loss in a hydraulic jump. The stable energy flux may be related to the .,;
height obtained asymptotically by a wave propagating over a flat bottom or a ]
o

plane slope. Measurements by Horikawa and Kuo (1966) indicate that a value of _ﬁ
.

Hy = 0.4 h is approached for waves breaking on a plane slope. In the '
fnllowing derivation, we denote (H/h)s = v, where Y is an empirical constant. ]
.1

R

Y

=
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Equation (4.1) may be related to a wave energy equation for dissipative

motion after assuming a time-steady wave field. For normally incident waves,

-
the energy equation becomes .
3 EC = - WE 4,2 :
9x ( g) = = ( . ) (7.*
Noting that Cgs = Cy, W may be written as )
9 :
KC l:’.g KC HS' q
H
where H = 2[A|, and A is a generally complex measure of wave amplitude and

phase.
For a plane beach with slope s, and neglecting the effect of setup (which

is not calculated by the wave model directly), a simple analytic solution of

(4.1) was obtained by Dally et al. Their comparison to laboratory data of
breaking waves shows that this model very successfully represents wave height
decay across the surf zone. This analytical model will therefore be used for ’i
comparison with the numerical model. Defining & = K/s, the wave height in h ﬂ
1

dimensionless form is related to the local water depth by:

(4.4) A»_';:

|

) = lam()  +a) 5 o«

where

NN

H
4= — (%ﬂ 3y K= FE (at breaking) (4.5)

and

9

»
Pl
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(:—b) =<{1—b) [1- XD en(:—bn ; a=2 - (4.6)

Based on comparisons to the laboratory data of Horikawa and Kuo (1966),

0.15. The special case a = 5/2 then

ff

Dally et al. chose the value K
corresponds to a beach slope s = 0.06. Results for a range of a values of

1 < a < 10, corresponding to the range of beach slopes 0.15 > s > 0,015, are

given in Figure 4.2 for vy = 0.4, « 0.78. The lines labelled | and 2

correspond to the constant decay H = kh = 0.78 h and to the stabhle wave height

Hs = Yh = 0.4 h, respectively. The effect of beach slope, s, is clearly
apparent. For mild slopes, a is large and the wave heights across the surf
zone are much less than given by the spilling breaker model, while, for steep
beaches, & is small and the wave heights exceed the spilling breaker model

(H = xh) heights. The paper by Dally et al. contains an extensive comparison

hetween these results and the data of Horikawa and Kuo (1966).

4.3. Application of the Model in the Parabolic Equation Method

The results (4.4-6) provide a check for determining the accuracy of
iterative schemes usinzg thas wave damping term (4.3). Noting that Hy = Yh and
H = 2|A], (4.3) may be written as

"
KC Zh_

we—"L0-"5 . (4.7)
h 4|A|2

Assuming that the reflected wave (in the minus x direction) is small, we use

the parabolic equation given by (3.28) tn obtain

1 i
- K )/ —C A - =t = 4.
Ay - t(k=k JA + zcg me C (cchy)y + wA =0 (4.8)

b

where we have neglected currents and nonlinear effects.
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Subscripts x and y denote differentiation.

R N ar e R — —

Here, A(x,y) 1is the complex

D Tamp T

T Tvmsw r T~

amplitude of a steady wave train

ik x - wt)
n(x,y,t) = Re{A(x,y) e °© b (4.9)

. ’ o
. v .
Y T W

k, is a reference value of the wavenumber based on a constant water depth

Vot
L .
a gt sl

which is characteristic of the domain, and

2 2
a4 B -ty . (4.10)

5C_ - 2h 2
g 4] Al

w =

Here we choose a real value of w in contrast to the results for boundary layer
damping (Liu, 1984), since the wave breaking process would not be expected to
distort the wavelength in the same manner as a small dissipation due to
viscous effects. Equation (4.8) is written in finite difference form

according to the Crank-Nicolson methed:

A1+1_ Ai
i 1 ., i+1 1+1 i i
—JTX—‘L—-Z—MRJ —ko) AJ +(k—k) AJ
c Wlo et 4 n cc Ay U oy !
g 2. A, A { gy'y, g yy,
\eveasl ik St AR T T
< Cg Cai Lm c i+ Cg
. z. M, .
i j j i
1 ir1 i+ i i -
+ > lw A% + w.,A,) =0 (4.11)
200 j Jod

where y-derivative terms are given hy
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(ccgi + chi)(A§+l—Ai) - (cc et y(a A§_1 )
i+ . g, . ]
(cchy)yi - i+l ] — i-1 (4.12) ]
N 2(8y) : ﬂ
and where 1
2 3
2., 1+1
1+1 K by -9
1
Wit (1 - ] (4.13) J
] 4las 7| o]
j 2
. rtad : . ]
The intermediate value Ai is provided by information on the starting grid 3
. o
row according to ;
i+l ) |
A1j+ —Aij i, i+l ~i+l i i
i -5 [(kj - ko)Aj + (kj- kO)Aj] .ﬂ
4
(cgi“— cg‘) Tl (c g~y)y1+1 ( chy)yi
e ey - B Y
4Ax Cai+l Cgi ; Cg1+1 Cgi
73 b j 3
1 ~i{+1 ~i+1 i i
+ = w. A. + W.A. = 0 4.14
7 (v A 5A5) (4e14)
where 2 ]
Yz(hi+l) -
}.< (1 - ] ] H 1a] > L or already breaking b
~i+1 onit! 1,2 h "2 - ®
w; = i 4|Aj| (4.15) :
0 -Lﬁ-l- < %_- or not yet broken ;
~i{+1 °
If waves are unbroken in all j grid blocks, wj 1s set equal to zero and the N j
scheme proceeds based on equation (4.14) with no second iteration. - :;
1
L J
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4.4. Normallv Incident Waves on a Plane Slope

Several cases were run for waves starting in a depth of 2 m and
propagating directly towards shore over a plane slope. The program checks at
each step that the wave height has not exceeded the breaking criterion. When
H becomes greater than xh, the program begins calculating values of the
damping coefficient (4.15). Breaking continues until w falls to a value of
zero, which does not occur on the plane beaches studied here but would be
expected to occur readily for waves propagating over uneven topography. For
each case examined, the wave height was assumed to be 1.0 m at a depth of 2 m,
and wave period was assumed to be 5 seconds. Values of a = 1, 3, and 10 were
tested using various computational grid spaces 8x. Results for a = 1 and
Ax = 0.2 m and 1.0 m are shown in Figure 4.3, @ = 3 and Ax = 1.0, 2.0, and
5.0 m in Figure 4.4 and & = 10 and Ax = 2.0, 5.0 and 10.0 m in Figure 4.5.

The exact solution (4.4) is included in each figure for comparison, with hy
being taken as the average of the depth at the last grid point before breaking
and at the first grid point after breaking. In each case, the numerical
resilts provide an adequate representation of the exact solution.

4.5. Application to Offshore Islands

Due to a complex combination of wave breaking, refraction and
diffraction, the wave field in the vicinity of an offshore island, either
natural or man-made, is extremely complicated. For pure refraction Pocinki
(1950) has provided a solution, and for nounbreaking waves Jonsson et al.
(197¢) and Smith and Sprinks (1973) have developed solutions which include
refraction and Jdiffraction. However, an island will pgenerally possess a surf
zone and the shadow zone created behind the island will persist for longer

distances than for the nonbreaking wave case due to loss of energy near the
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Figure 4.5. Numerical results for wave height decay; normal incidence.
a = 10, s = 0.01L5. analytic solution; @, Ax = 2.0 m;
o, Ax = 5.0 m; (], &x = 10.0 m.
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Downwave of the breakwater, the transmission coefficient is given by
kp = IA(x,y)l. In Figure 4.9a,b, several contour plots of k¢ are provided for
breakwaters with dimensionless widths of k& = 5 and 10m. Contrary to the
situation shown in Penney and Price (k& = 10m, their Figure 7) which neglected
the interaction between the diffraction patterns from each end of the
breakwater, the minimum value of kp does not occur directly behind the
breakwater but off to each side along a parabolic curve due to the development
of a short crested pattern of intersecting waves in the lee of the breakwater
or island.

As a non—-conservative measure of the extent of the shadow behind an

island, we will use the centerline value (y = 0). Figure 4.10 shows kT

/FE?j

From the figure the transmission coefficient increases

asymptotically to unity for large x as the waves diffract around the island.

(9.3 12)>
As an example, at a distance given by kx = ——3-77———— , the wave height

recovers to 90% of its original value. Expressing x in terms of the width of

the island, x = x9022, where X9y is the dimensionless distance to the point

2
Q'_BL]kQI.
2

The distance Xg() depends on the relative size of the island width to a

where 907% of the original amplitude is recovered, we obtain xgqg = [

wavelength; the wider the island the longer it takes for the wave height to

recover. Note that for kp = 0.75, the distance is far shorter, x = x75(2£)

C(3.3)°
B T

5 k2(22), which is about 8 times closer to the island. In practice, a

factor of two or three should be applied to x, since, as shown, the minimum
value of k; is not directly behind the island.
447. Conclusion

A method for including the effect of wave breaking in parabolic models
for combined refraction and diffraction has been developed and shown tc give
good agreement to laboratory results for wave helghts acrr - the surface.
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the model to the other, instead of infinity. For simple geometries,
analytical solutions are available as a third way to compute the far—-field
wave heights. This latter course is chosen here to examine the waves behind
an island approximated by an offshore breakwater.

By superposing the solutions of the LaPlace equation for normally
incident waves propagating past a half-infinite breakwater, Penney and Price
(1950) showed results of the transmission coefficient for an island with a
width of 10 wavelengths. A similar superposition was done by Liu and Mei
(1976) using a similar parabolic equation to the one treated here. An island
with a small width to length ratio was examined by Mei and Tuck (1980). Here
we develop an exact solution of the parabolic approximation for the normally
incident wave field behind a short breakwater, in order to approximate the
effect of an island totally blocking the incident wave. The solution is
provided in Appendix II.

Defining o = /E7;; (y+2) and B = /E7;;.(y—l), where k is the wave number
of the normally incident wave, 20 as the width of the breakwater, and x as the
downwave direction, the normalized wave amplitude is

AGy) = 1= (35 [C(@) - C(8) + 1(S(a) = 5(8))] (4.19)

where C(x), S(x) are the Fresnel cosine and sine integrals:

X 2

C(x) = | cos(me/2)dt (4.20)
o
X 2

S(x) = [ sin(nt“/2)dt (4.21)
[0}
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i+1

i+l i+l i+1
|A*|j = a[AIj_l + (1—2a)|A|j + a|A|j+1 (4.17)

A A

where a was taken as 0.2. This filter successfully eliminated noise but

interacted with the breaking wave model to the extent that the overall form of

A,”""‘. '! ‘ N 4.

the solution differed. Instead, we employ a scheme in which the model “3;
: searches for anomalously large values of A occurring along grid rows with a '7j}ii
E contracting surfzone and reduces the large values in magnitude to a value : t:iq
{ equal to the water depth. The plots in Figures 4.6-8 present unfiltered data “1
in order to give an idea of the magnitude of the remaining noise and its
1 effect on the overall contours. i
Q}
4.6, The Far-Field of the Island ?
The persistence of the shadow in the wave field behind the island is . .1
often an important variable, particularly when siting an island near developed 'j
shorelines. In order to determine the wave field many wave lengths past the j;f,i
island, several procedures may be followed. First, the model can be run for ,::_'fi.'.i-':‘
longer distances than shown in Figures 4.6-8. Alternatively, the numerical R
model can be used as input to an analytical model, resulting in a hybrid
model. This can be done using a convolution integral developed in the .]
Appendix to determine A(x,y) over a region of constant depth. ?
2

1 - g ) 2
A(x=5,y) =/2—“‘(—‘:{-_7,76 4 f_mf(C)e 2(x=8) g (4.18) .'J

where £(;) is the variation of A(x,y) along x = &, the last grid row in the

numerical model. This integral 1s limited, of course, to the width of the

numerical model and hence the integral i{s taken from one lateral boundary of
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where hb is the maximum height of the conical island above the bottom and XA
and Y, are the semi-major axes of the ellipse measured at the bottom. The
island's beach slopes vary with position around the island; but on the semi-
major axes, it is hb/XA and hb/YA.

For the computations, hy = 20 m and XA and YA vary. The incident wave
has an amplitude of 1 m and a period of 10 seconds. The wave direction is
assumed to be along the x—axis and the problem is symmetric about the x-axis,
so only half the wave field is computed for this case. Figures 4.6, 4.7 and
4.8 show contour plots of the instantaneous water surface and the transmission
coefficient around a nearly circular island (XA = 60, Y, = 80 m), a wide

island (xA = 60, YA = 160 m) and a long narrow island (XA = 160, Y, = 60 m).

A
From the figures, which show approximately four wavelengths, it is clear that
the shape of the island is extremely influential on the wave field behind the
island, with the island with the smallest aspect ratio creating the smaller
shadow. Additionally, the presence of the island creates a "bow-wave"-like
disturbance which spreads laterally in the downwave direction. The refraction
of the waves on the front side of the island creates a region of high wave
height on the shoulders of the islands for all three cases. Further focusing
of the wave behind the 1sland occurs due to refraction by the island's
bathymetry.

In practice, the shift from broken wave amplitudes to unbroken wave
amplitudes along a y-grid row introduces a numerical discontinuity in the
solution. This discontinuity introduces noise In the computed solution which
then propagates into the downwave region. The noise is manifested as a stable
Nyquist-wavenumher osclillation with an amplitude of about one to two percent
of the initial wave amplitude. An attempt was made to numerically filter the
oscillation during model calculations hy the use of a dissipative f{nterface in

the surfzone on the updated row:
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island boundary. Several numerical (two-dimensional) examples of waves in the
vicinity of islands have been computed here using Eqns. (4.11) and (4.14) and
including wave breaking.

The inclusion of dry shoreline boundaries or vertical walls in the
computational domain of a wave model generally requires a modification of the
Asmain which can include the specification of stair-step boundaries in the
~ase of coamplicated obstacles. However, if the surface-piercing obstacle
cansi«sts of a4 sloping structnre which is expected to be surrounded by a
surfzone, a mijor simplification may be introduced. By replacing the surface-
plercing {sland by a shoal with a flat top and covered by a thin layer with a
depth on the order of a centimeter, the entire island area may be included in
the unmodified computational gride. In this "thin film" model, wave breaking
then reduces wave height across the surfzone to a small value at the "real”
shoreline, after which further breaking reduces the height of a wave
propagating over the island to approximately Yy times the film depth. This
wiave s transmitted beyond the Island and plays no role in the downwave region
due to its small height. This approach alleviates the need for internal grid
boundaries unless reflective structures are to be included.

The islands in the present computations have an elliptical planform, and
are located in water of constant depth hy = 10 m. The depth contours of the

islands are given by

r / X 2 Y 27
h () + (G -1) +n
b\\/.‘(A YA ) o
2 2
h =< for (;;) + (%;ﬂ <1 (4.16)
2 2
| h ; for (%;) + (%:ﬂ > 1



The "thin film" model provides a convenient means to predict the wave
heights in the vicinity of an island without the computational necessity of
including {internal boundary coanditions to the model. 1Islands are treated as
extremely shallow shoals and wave breaking insures that these "thin film"”
shoals produce wave patterns equivalent to those for a surface—piercing
island.

The shadow thrown by islands in the downwave direction persists for
distances equivalent to many island widths, depending on the dimensionless
island width (k). An analytic model for constant depth is developed to
illustrate the diffracted wave field behind the island.

There exists a general absence of data on the characteristics of breaking
waves propagating either normally or obliquely over arbitrarily uneven
topography. Thus, many of the predictions of the present model are
necessarily quaiitative in nature, and require further verification which

depends on the future availability of data.

Appendix 4.1. Analytic Solution for the Constant-Depth Half-space

Over a flat bottom, neglecting dissipation, the parabolic equation for

the wave amplitude, A(x,y), behind the island is

32A
8y2

21k 2A 4
X

3 =0

- -+« is the wave number. This equation may be used to extend the recsults
rosinnsly described finite-difference calculations to the farfield of
“or similir obstacle)s The boundary condition (obtained at the

'he eompuatational grid) may be taken as
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ACO,y) = £(y) 5 |y|<=

where now x = 0 signifies the start of the half-space to be considered. Using

the Fourier transform pair:

o

oo
N o 1 - ix
A = f A(x,y)e ydy ; A= E;-f A(x,\)e ydk ,

-0

we obtain an equation in x alone,

2ik 22 _ 2% - o
9~
where
ALY = £ = [ fovye MYy

Solving, we obtain

2
~ -~ A‘-
A(x,M) = A0, M )er X/ 21K

This solution may be used in either continuous form or in a discretized
form using FFT methods to extend the finite-difference calculations. Here, we
consider a special case of a breakwater of length 2¢ situated on the y-axis at
x = 0. For the general case of waves obliquely 1incident on x = u, f(y) may be

written as

] ; lyl<e

f(y) =
o ly 1>
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where XO i1s the y—-component of the wavenumber vector
A, = ksin®

Transforming f(y) gives

Zsin(AO—A)Z

ACD,0) = 2m8 (A _-A) - ey

where 8 is the Dirac delta function.

Taking the inverse transform of A gives

251n(k0—k)£

2
-iA"x/2k 1Ay
(Ao—k) e dA

A(x,y) = %— i [2n5(xo->‘) -

.2
-1Ax/2k 1Ay
e e -

" —in /4 jﬂ elk

o° ik(y-c)z/Zx
e
2nx

dz

-
where the first term represents an undisturbed, obliquely-oriented plane wave
and the second term contains the disturbance due to the breakwater. Setting
Ao equal to zero (normal incidence) and introducing the definitions of the
Fresnel cosine and sine integrals yields equation (4.17). The solutions
obtained using the parabolic approximation are similar in form to the form of

the Fresnel approximation in optics.
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